

FZH series

Maximum working pressure up to 70 Mpa (700 bar) - Flow rate up to 80 I/min

INSTALLATION, SERVICE AND MAINTENANCE MANUAL AND SAFETY INSTRUCTIONS

Please scan the QR codes to get updated electronic version of the related document.

Description

Technical data

Filters for potentially explosive atmosphere

Maximum working pressure up to 80 Mpa (700 bar) Flow rate up to 80 I/min

FZH is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 80 I/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element "N", for use with filters provided with bypass valve
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

- Standard NBR series A
- Optional FPM series V
- Optional MFQ series F

Bypass valve

Opening pressure 6 bar ±10%

Note

FZH filters are provided for vertical mounting

Δp element type

Fluid flow through the filter element from OUT to IN

Microfibre filter elements - series N-R: 20 bar.

Element series "N - R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar.

Element series "H - S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

Element series "U":

- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Temperature

Seals	Ambient Temperature	Max fluid Temperature	Temperature Class	Max surface temperature
NBR	-15 °C ÷ +80 °C	+80 °C	T6	T85 °C
	-15 °C ÷ +80 °C	+80 °C	T6	T85 °C
FPM / MFQ	-15 °C ÷ +95 °C	+95 °C	T5	T100 °C
	-15 °C ÷ +110 °C	+110 °C	T4	T115 °C

Filter with:

NBR seal in configuration **zerospark**

II 3G Ex h IIC T6 Gc X II 3D Ex h IIIC T85°C Dc X FPM / MFQ seal in configuration **Zerospark**+

II 3G Ex h IIC T6... T4 Gc X II 3D Ex h IIIC T85°C...T115°C Dc X

Weights [kg] and volumes [dm³]

Filter series		Weights [kg]					Volumes [dm³]				
	Length					Length					
FZH 012		2.1	2.2	2.7	3.3		0.10	0.12	0.15	0.20	
FZH 040		-	4.5	5.1	5.6		-	0.19	0.26	0.34	

FILTER ASSEMBLY SIZING Flow rates [I/min]

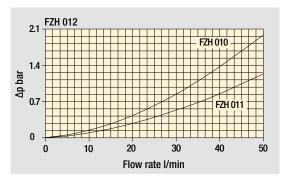
			Filter elem	ent design	- N Series		Filter element design - H-U Series				
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	1	4	6	8	9	11	3	5	6	7	9
FZH 012	2	7	9	17	20	26	5	7	14	17	23
rzn viz	3	11	14	25	27	32	11	14	24	27	32
	4	17	20	29	31	34	13	16	26	29	33

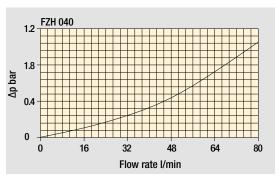
		Filter element design - R Series					Filter element design - S-U Series				
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	19	25	43	50	59	19	23	41	45	55
FZH 040	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

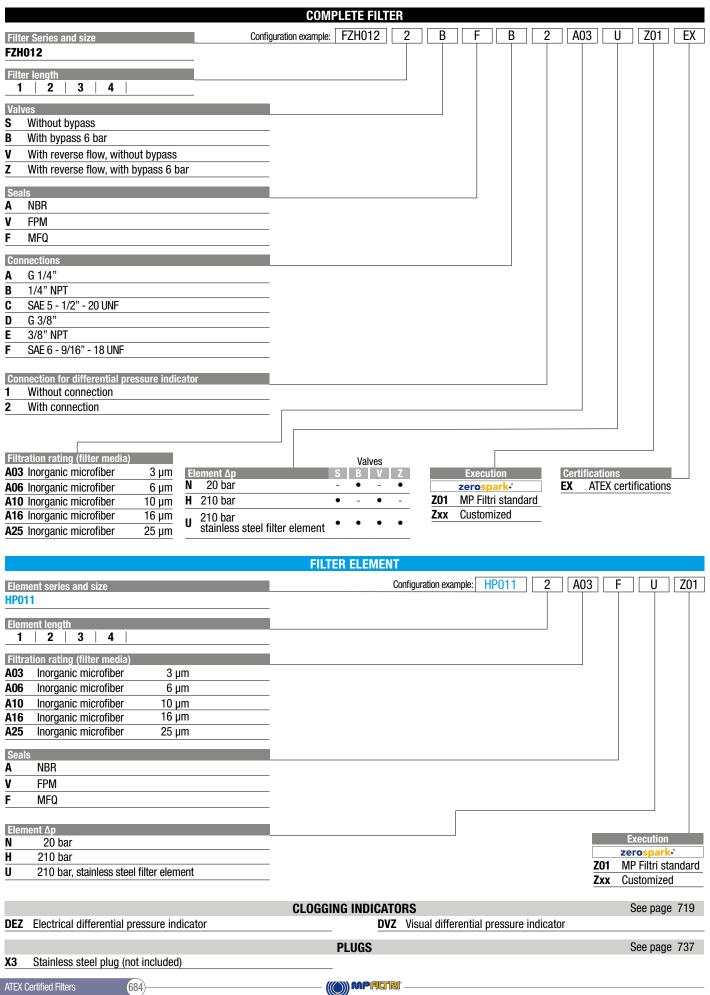

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

Filter series	Style S	Style B	Style T	Style D	Style V	Style Z
FZH 012	•	•	-	-	•	•
FZH 040	•	•	•	•	•	•
	OUT TO THE PROPERTY OF THE PRO	OUT T	OUT TOUT TOUT TOUT TOUT TOUT TOUT TOUT	OUT T	OUT =	OUT

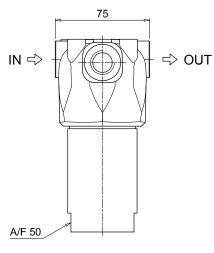
Pressure drop

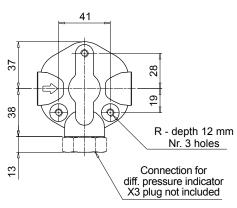
Filter housings Δp pressure drop

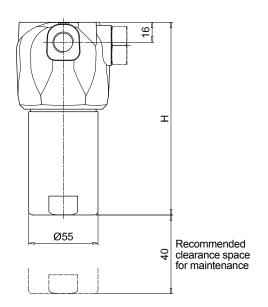


The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Designation & Ordering code

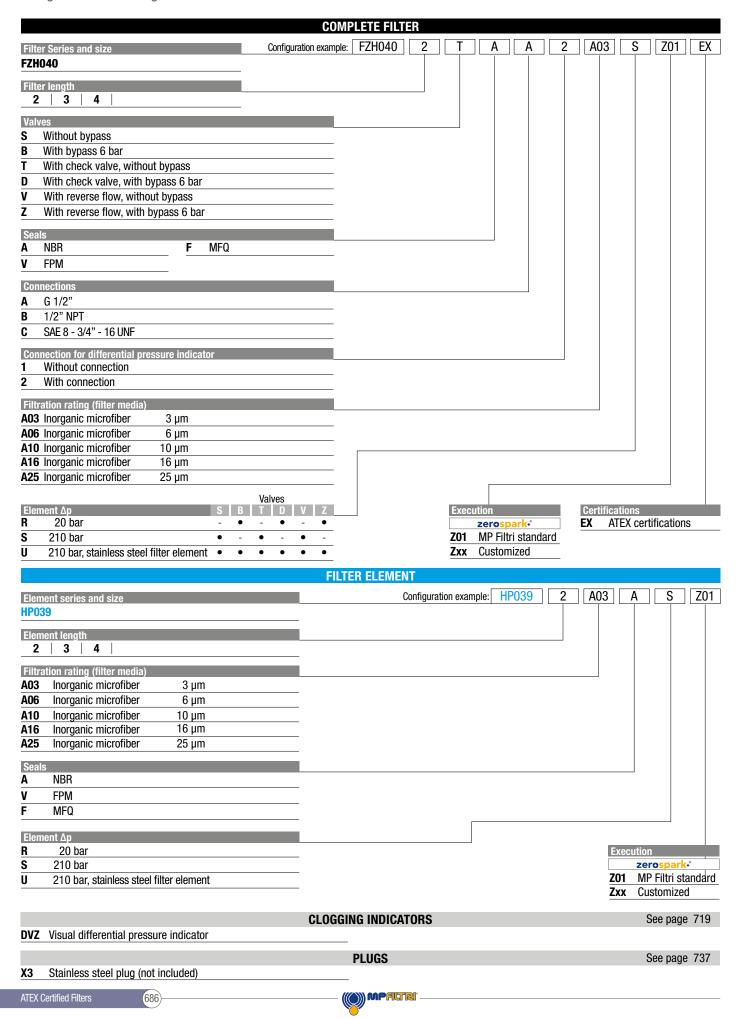


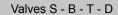

Dimensions

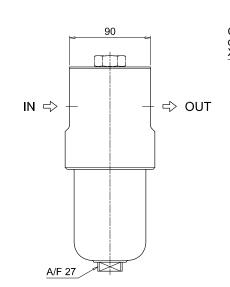

FZH012

Filter length	H [mm]
1	93
2	104
3	154
4	204

Connections	R
Α	M6
B - C	1/4" UNC
D	M6
E-F	1/4" UNC

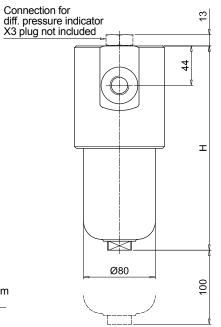






Designation & Ordering code

Dimensions

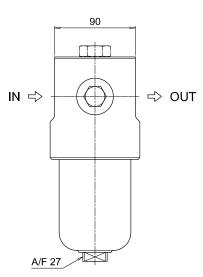


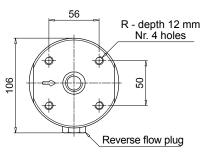
56

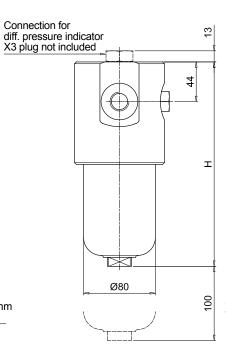
Ø100

R - depth 12 mm Nr. 4 holes

20

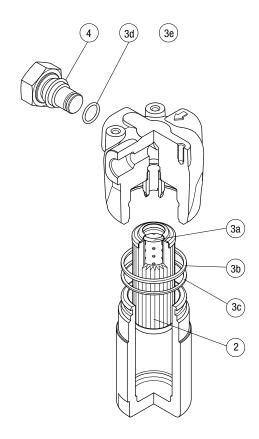

FZH040

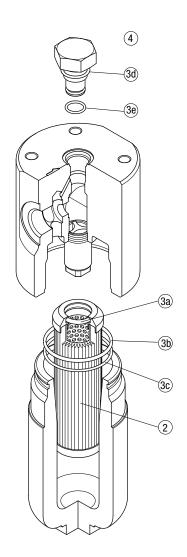

Filter length	H [mm]
2	204
3	247
4	291


Connections	R
Α	M10
В	3/8" UNC
C	3/8" UNC

Recommended clearance space for maintenance

Valves V - Z





Recommended clearance space for maintenance

Order number for spare parts

	Q.ty: 1 pc.	Q.ty: 1 pc.		Q.ty: 1 pc.		
Item:	2		3 (3a ÷ 3e)	4		
Filter series	Filter element		de number FPM	Indicator connection plug NBR FPM		
FZH 012	See order	02050856	02050857	X2H	X2V	
FZH 040	table	02050860	02050861	٨٤١١	/\~ V	

